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Genome-wide association studies (GWAS) identify genetic

variants that distinguish a control population from a population

with a specific trait. Two challenges in GWAS are: (1)

identification of the causal variant within a longer haplotype that

is associated with the trait; (2) identification of causal variants

for polygenic traits that are caused by variants in multiple genes

within a pathway. We review recent methods that use

information in protein–protein and protein–DNA interaction

networks to address these two challenges.
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Introduction
Genome-wide association studies (GWAS) aim to identify

genetic variants that distinguish a population of individ-

uals, or cases, that have a particular phenotype/trait (typi-

cally a disease) from control individuals [1]. In its simplest

form, analysis of a GWAS is a logistic regression where for

each genotyped single-nucleotide polymorphism (SNP)

the number of copies of the non-reference allele is

regressed onto disease status for all individuals. The

resulting P-value for each SNP is then corrected for

multiple tests, and SNPs with alleles significantly

enriched in controls are identified (Figure 1a).

There are two major challenges in using GWAS to

identify the genomic underpinnings of complex pheno-

types (Figure 1). First, GWAS-identified SNPs are gener-

ally not located in the gene(s) underlying the phenotype

of interest, but rather, are in linkage disequilibrium

with causal genes or SNPs. Thus, one challenge is to
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identify causal genes within a GWAS-implicated locus

(Figure 1b). One solution to this challenge is to use

interaction networks to rank genes within a haplotype

according to interactions with other genes known to

be associated to the phenotype of interest or to similar

phenotypes.

A second challenge is that GWAS-detected variants do

not explain most of the genetic effects found in affected

individuals – even for diseases known to have a strong

genetic component, such as obesity and diabetes. This

has been termed the ‘‘missing heritability problem’’) [2–
5]. An underexplored cause of missing heritability is

genetic heterogeneity: the concept that different collections

of causal variants are present in different patients.

Genetic heterogeneity manifests itself on two levels.

First, affected individuals may harbor distinct causal

variants within a given causal gene. Second, causal var-

iants may be distributed across different genes within a

pathway (signaling, regulatory, metabolic) or protein com-

plex [6]. This review focuses on the second type of

genetic heterogeneity.

Genetic heterogeneity resulting from pathways and

protein complexes complicates GWAS because for any

specific causal gene, only a subset of the cases will contain

a variant in that gene, while other cases will have causal

variants in other genes in the pathway. This reduces the

power of tests of association between single genes and the

phenotype. Unraveling such genetic heterogeneity

requires testing the association between the phenotype

of interest and different combinations of genes containing

putative causal variants. The goal is to identify sets of

genes with the property that each affected individual

contains a causal variant in at least one gene in the set.

It is also possible to consider the case where an affected

individual contains multiple causal variants in different

genes in the set, but we will not consider this case here.

The naive approach of exhaustively testing all combi-

nations of variants is not computationally or statistically

feasible. For example, one cannot exhaustively test all

1020 combinations of 5 genes and retain statistical power

without data from an astronomical number of individuals.

In this review, we describe recent work using interaction

networks to address these two challenges in GWAS,

focusing on three specific applications:

1. Causal gene identification. It has been observed

that different causal genes for the same or similar
www.sciencedirect.com
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Two applications of network-based analyses of GWAS. (a) GWAS analysis computes the association between a SNP and case/control, reporting a P-

value for each SNP. (b) Casual gene identification is the problem of identifying a single causal gene (circled in red) for the phenotype from a larger locus

of candidate genes that is significantly associated with the phenotype. (c) Causal network identification is the problem of finding a group of interacting

genes (e.g. a signaling pathway or protein complex) containing SNPs that distinguish cases and controls.
phenotypes often interact, either directly or via

common interaction partners. Network approaches

use this observation to select putative causal gene(s)

from haplotypes by finding genes that are close or

related in a network to other known causal genes.

2. Causal gene identification for expression phenotypes.

pt?>Gene expression is a phenotype of particular

interest because it is readily measured from micro-

arrays or RNA-Seq. Because gene expression is a

molecular phenotype, network approaches are attrac-

tive as they may provide a mechanistic explanation for

a causal variant.

3. Causal network identification. GWAS of genetically

heterogeneous or polygenic diseases require testing
www.sciencedirect.com 
groups of genes that are known to participate in the

same biological process. Standard gene set enrichment

or ranking statistics have been used to test known

pathways in GWAS [6]. Interaction networks provide

an alternative source of information that can be used

profitably to identify combinations of causal variants

without limiting analysis to known pathways.

In this review, we focus on the use of interaction networks

in GWAS, and more specifically in common variant

association studies (CVAS). However, we also briefly

summarize some of the approaches used for the analogous

causal network identification problem in cancer genome

sequencing studies [7,8].
Current Opinion in Genetics & Development 2013, 23:602–610
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Figure 2
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Schematic of methods for causal gene identification. (a) Candidate causal genes in a locus (or haplotype block) identified as significantly associated

with a phenotype by a GWA study are mapped (blue circles) to a protein–protein interaction network. Each candidate gene is ranked in relation to a set

of known causal genes (green squares; for simplicity, only one causal gene is shown) using a network distance measure. Different network distance

functions that incorporate different features of network topology have been proposed including connectivity (e.g. direct interactions), network flow,

random walks, and topological similarity (e.g. diffusion ‘‘profiles’’). (b) Methods for identifying causal genes for expression phenotypes identify a causal

gene from a locus of candidate genes (blue circles) that explain a differentially-expressed gene (red circle). Network methods find explanatory path(s)

from the causal gene to the differentially expressed gene through an integrated network of protein–protein and protein–DNA interactions that provide a

mechanistic explanation for the change in expression. In this example, candidate gene s is identified as upstream of differentially-expressed gene G4

with explanatory path (blue) from s to G4 terminates in a protein–DNA interaction.
Network approaches
Interaction networks

Large-scale interaction networks incorporate the results

of both molecular and high-throughput experiments to

describe different biochemical relationships between

genes and the proteins they encode. These networks

take the form of a graph G = (V, E). The vertices V
represent genes and their corresponding protein pro-

ducts. The edges E join pairs of vertices whose corre-

sponding proteins exhibit a specific biochemical

interaction (e.g. physical association, phosphorylation,

etc.). In some cases, the edges may have a direction

corresponding to the directionality of the biological

interaction. Commonly used protein–protein interaction

(PPI) networks include HPRD [9], BioGRID [10],

STRING [11], iRefIndex [12], and Reactome [13], most
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of which combine literature-curated interactions and

interactions derived from high-throughput experiments

[14–18]. More recently, Multinet [19�] also integrates

protein–DNA interactions from ENCODE.

Causal gene identification

The most common use of interaction networks in GWAS

analysis is to identify the causal gene inside a haplotype

block (Figure 2 and Table 1a). While GWAS identify

haplotype blocks associated with a particular disease or

phenotype, they typically do not have the resolution to

identify the causal gene within the associated block. A

network approach to causal gene identification is motiv-

ated by the observation that the protein products of causal

genes often directly interact with, or share many inter-

acting partners with, the protein products of other causal
www.sciencedirect.com
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Table 1

Network analysis methods for GWAS

Algorithmic approach Reference Interactome Genetic/phenotypic data

a. Causal gene identification

Direct neighbors Oti et al. [20] HPRD + high-throughput experiments Causal genes

CIPHER [21] HPRD + OPHID + BIND + MINT Causal genes + phenome

Lee et al. [55] HumanNet GWAS SNPs

Network flow & random walks GeneWanderer [23] HPRD, BIND, BioGrid, IntAct, DIP, STRING Causal genes

PRINCE [24] HPRD + high-throughput experiments

(weighted)

Causal genesa + phenotype

similarity scores

MAXIF [29] HPRD Causal genes + phenome

Zhu et al. [25] HPRD Causal genes + phenome

Topological similarity AlignPI [27] HPRD Causal genes + phenome

VAVIEN [26] NCBI Entrez Gene (weighted) Causal genes + phenotype

similarity scores

b. Causal gene identification

for expression phenotypes

Topological properties Kreimer and

Pe’er [35]

HPRD eSNPs

Network flow Tu et al. [30] PPI: yeast eQTLs

PDI: yeast

ResponseNet [32] PPI: yeast eQTLs

PDI: yeast (weighted)

ResponseNet2.0 [33] PPI: BioGRID + DIP + MINT + IntAct eQTLs

PDI: TRANSFAC (weighted)

Conductance eQED [31�] Yeast (weighted) eQTLs

Kim et al. [34] PPI: MINT + IntAct + Reactome + HPRD +

others PDI: TRED

eQTLs

c. Causal network identification

Seed and extend PINBPA [36,42�] iRefIndex filtered for high-confidence

interactions

GWAS SNPs

dmGWAS [41] MINT + IntAct + DIP + BioGRID + HPRD + MIPS GWAS SNPs

NETBAG [39] BIND + BioGRID + DIP + HPRD + InNetDB +

IntAct + BiGG + MINT + MIPS

De novo CNVs

NETBAG + [40�] BIND + BioGRID + DIP + HPRD + InNetDB +

IntAct + BiGG + MINT + MIPS

De novo CNVs + SNVs +

GWAS-implicated loci

Exhaustive search of 2-step

networks

NIMMI [44] BioGRID GWAS SNPs

a GeneCards is the source of causal gene information for PRINCE. For all other methods, OMIM is the source of causal gene information.
genes for the disease. Thus, given prior knowledge of

causal genes for a phenotype, one may identify new causal

genes by finding the gene in the haplotype block that is

closest on the network to the known causal genes.

Early methods used a simple definition of network dis-

tance, examining only nearest neighbors on a protein

interaction network [20,21]. However, most biological

interaction networks have a heavy-tailed degree distri-

bution [22], meaning that most pairs of proteins are

connected via short paths. This property makes nearest

neighbors or shortest paths less desirable distance

measures. The first method to utilize a more sophisticated

measure of network distance that considers the overall

topology of the network, GeneWanderer [23], ranks can-

didate genes based on the probability that a random walk
a Ref. [56] performed benchmarking confirming that methods taking

into account global network topology outperform connectivity methods

in causal gene identification.

www.sciencedirect.com 
starting from a known disease gene will finish at each

candidate gene. Similar approaches measure network

distance using information flow and network propagation

[23–25].a Two other methods select candidate causal

genes based on their topological similarity to known

causal genes [26,27] rather than their network distance.

Several of these methods also improve upon early

approaches by incorporating phenotype similarity

scores between diseases based on the overlap of their

OMIM medical subject heading descriptions (described

in [28]). Some methods incorporate phenotype sim-

ilarity scores only for disease pairs including the disease

for which causal genes are sought [24,26], while others

integrate a ‘‘phenome’’ network in which phenotypes

are nodes and weighted edges between all phenotype

pairs represent their similarity [21,25,29]. Incorporating

this information enables causal gene identification for

diseases for which there are no previously known causal

genes.
Current Opinion in Genetics & Development 2013, 23:602–610
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Causal gene identification for expression phenotypes

An important subproblem of causal gene identification

arises when the phenotype of interest is gene expression;

loci associated to a gene expression phenotype are some-

times referred to as expression quantitative trait

loci (eQTL) or expression SNPs (eSNPs). Network

approaches have been used to provide mechanistic

explanations for observed correlations between a locus

containing one or more source genes and a target gene that

is differentially expressed between cases and controls

(Table 1b). These methods find high-scoring paths in a

combined protein–protein and protein–DNA interaction

(PDI) network between one of the source genes and the

target gene (Figure 2b). To explain the change in expres-

sion, the final edge in these paths is a protein–DNA

interaction between a transcription  factor that regulates

the target gene. Three of the first such methods

[30,31�,32] analyzed eQTLs in yeast. The eQED algor-

ithm of [31�] used an electrical resistance model to find

high-weight explanatory paths that connect SNPs to dif-

ferentially expressed genes through known signaling and

regulatory interactions. In comparison, ResponseNet

[32] and ResponseNet2.0 [33] formulate the problem

as a minimum-cost network flow, which is mathemat-

ically related to electrical resistance. Kim et al. [34]

further extended these ideas, applying them to human

cancer data and adding additional steps to identify causal

genes from multiple explanatory paths. More recently,

Kriemer [35] analyzed eSNPs identified in human whole-

genome and RNA-Seq data, and found that source and

target genes are generally closer on the PPI network.

However, in contrast to the work above, they did not use

protein–DNA interactions to find explanatory paths for

these associations.

Causal network identification

A third use of interaction networks in GWAS analysis is to

identify causal networks, or sets of interacting genes

containing causal variants. This approach complements

popular pathway-based tests that restrict attention to

groups of variants in known pathways or gene sets using

enrichment statistics [6,36,37�]. Network approaches

address three limitations of gene set analysis. First, gene

sets do not model the topology and type of interactions

between genes, and instead treat all genes in the set as

equivalent. Second, gene set methods perform a separate

statistical test on each gene set and do not consider the

interconnection of pathways in larger signaling and regu-

latory networks. Third, by restricting attention to known

pathways, gene set methods are unable to discover novel

groups of interacting genes that are associated to the

phenotype.

Several algorithms have been introduced to find causal

networks in protein–protein interaction networks

(Figure 3a and Table 1c) [36,38,39,40�,41,42�]. Authors

[36,42�] use the jActiveModules plug-in [43] in Cytoscape
Current Opinion in Genetics & Development 2013, 23:602–610 
to analyze multiple sclerosis GWAS data on the iRefIn-

dex protein–protein interaction network [17]. jActiveMo-

dules provides a general approach to find high-scoring

subnetworks in a vertex-weighted network (Figure 3b).

dmGWAS is a similar approach [41]. The NETBAG [39]

and NETBAG + algorithms [40�] – used to identify sub-

networks affected by rare and de novo variants in autism

and schizophrenia, respectively – are also related but

analyze an edge-weighted interaction network. All of

these methods use a greedy heuristic (‘‘seed and extend’’)
to find high-scoring subnetworks by iteratively adding to a

subnetwork those genes that increase the subnetwork’s

score (Figure 3b). These approaches compute the stat-

istical significance of the resulting subnetworks by com-

paring to an empirical distribution of subnetwork scores.

An additional approach is the Network Interface Miner

for Multigenic Interactions (NIMMI) [44]. NIMMI

employs a modified version of the PageRank algorithm

for webpage ranking [45] to compute a weight for each

gene that represents its network centrality. These

weights are combined with gene-wise P-values from

VEGAS [46�], and an exhaustive search is performed of

all subnetworks consisting of paths of length 2 from a

starting node.

In comparison to the number of methods for causal gene

identification, there remain relatively few methods for

causal network identification. However, an analogous

problem occurs in cancer genome sequencing studies,

where the challenge is to identify signaling/regulatory/

metabolic networks harboring more somatic aberrations

than expected by chance [7,8]. One algorithm introduced

for this task, NetBox [47], decomposes a network into

modules of mutated genes that are either directly con-

nected or connected through single linker genes. Another

algorithm, HotNet [48], uses a heat diffusion model to

identify significantly mutated subnetworks as ‘‘hotspots’’

on the network (Figure 3c). Heat is assigned to each node

in proportion to its mutation frequency, and this heat then

diffuses over the edges of the graph, either for a fixed time

[49] or until equilibrium [48]. Hot subnetworks are found

by removing cold edges and the statistical significance of

the number and size of the resulting hot subnetworks is

computed. Thus, HotNet simultaneously considers both

the score assigned to each gene and the global topology of

the network, in contrast to most of the methods above that

use these two features sequentially. Despite the general-

ity of these two algorithms, neither has yet been used to

analyze GWAS data. We discuss prospects for adapting

these methods for GWAS analysis in the next section.

Challenges and future prospects

A number of challenges remain in network analysis of

GWAS. First, network methods are limited by the

coverage and quality of protein–protein and protein–
DNA interaction networks. High-quality experimental
www.sciencedirect.com
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Figure 3
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Schematic of methods for causal network identification and examples of two algorithms. (a) Proteins in the protein–protein interaction network are

scored using the association P-values within or near their corresponding gene. In this example, nodes are colored using a blue-to-red gradient where

blue represents low scores and red represents high scores. Proteins without scores (i.e. those that were not tested in the GWA study or had no

significant associations) are colored gray but remain in the network for analysis due to their effect on the network’s topology. High-scoring

subnetworks are then reported, taking into account both the protein scores and the network topology. (b) jActiveModules, NETBAG, and NETBAG + all

use a greedy heuristic (seed and extend) to identify causal networks by iteratively adding to a subnetwork genes that increase the subnetwork score.

jActiveModules uses a vertex-weighted graph where each vertex has an associated Z-score, and the score of a subnetwork with k nodes is the

normalized sum
P

iZi=
ffiffiffi
k
p

of Z-scores. In the original application of jActiveModules, the Z-score of a gene indicated its differential expression in

microarray experiments. For the application to GWAS, [36,42�] transform gene-level P-values (from VEGAS [46�]) of association into Z-scores.

NETBAG algorithms [39,40�] analyze a weighted graph with edge weights determined by naı̈ve Bayes integration of protein interaction and protein

complex databases, protein sequence alignment, and co-evolution. In the vertex-weighted graph shown, G1 is the seed gene, and genes G4, G5, G2,

and G6 are added to the subnetwork in that order (as indicated with labels on the edges) G3 is not added because it has a low score. (c) HotNet uses

heat diffusion in order to identify causal networks. Heat is assigned to each gene in proportion to its score and diffuses over the edges of the network.

The heat diffusion process takes into account the topology of the network so that genes with high-degree pass proportionally less heat to their

neighbors than genes with low degree. In the example shown, G4 and G3 are initially cold (indicated by light blue), while G1 and G2 are ‘‘hot’’ (indicated

by red and orange, respectively). After heat diffuses along the edges, G1, G2, and G4 have the same heat, while G3 is colder than G4 because it is not

directly connected to G1. The remaining nodes G5 and G6 are initially cold and remain cold because they are only connected to the high-degree G1. A

hot subnetwork of genes G1, G2, G3, and G4 is identified.
interaction data are laborious to obtain. Consequently,

existing network databases have many missing inter-

actions, and these reduce the sensitivity of network

analyses. High-throughput interaction data, combined

with additional experimental validation, will be crucial

to increase sensitivity. Conversely, interaction databases

also contain false positive interactions. Some of these are a

result of incorrect predictions, errors in data curation, or

experimental noise. Others result from the fact that most

interaction networks are a superposition of interactions

measured in different cell types and conditions, only a

subset of which may be active in the tissue of the disease.

Authors of [50,51] demonstrated that tissue-specific
www.sciencedirect.com 
protein–protein interaction networks can improve dis-

ease-gene prioritization results.

Second, the dramatic decline in the cost of DNA sequen-

cing is enabling whole-exome and whole-genome sequen-

cing of cases and controls. Sequencing allows the analysis of

de novo variants and rare variants in both coding and non-

coding regions. A promising example of this type of analysis

is demonstrated by Gulsuner et al. [52��], who identified

causal subnetworks of interaction networks that contain

significant numbers of de novo variants in schizophrenia

patients. However, the challenge of extending causal net-

work and causal gene identification approaches to rare
Current Opinion in Genetics & Development 2013, 23:602–610
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variants requires additional methodological advances. For

example, since causal rare variants may be randomly

associated with different common haplotypes in sampled

individuals, most rare variant association study (RVAS)

analyses require sensible methods to pool variants across

a gene or locus [53]. These approaches help address the

problem of genetic heterogeneity resulting from different

causal variants within a specific causal gene, but leave open

the issue of rare causal variants across genes in a pathway/

complex. A combination of pooled rare variants within a

locus and network approaches across a locus is a promising

direction.

In addition to a role for network approaches in CVAS,

RVAS and de novo variant studies, network analyses have

proven useful in the analysis of somatic mutations in

cancer genomes. Cancer genome sequencing studies face

an analogous problem of genetic heterogeneity where

causal somatic mutations, or driver mutations, are distrib-

uted across multiple genes in a pathway [7,8]. As noted

above, several network methods have been introduced for

this problem [47–49]. While some of these methods may

prove useful for germline variants, there are notable

differences in the analyses of somatic vs. germline var-

iants. First, somatic mutations, as well as de novo germline

mutations, arise independently in each individual, and

thus can be analyzed without considering ancestry and

population structure. In contrast, analyses of common

and/or rare variants require additional techniques to con-

trol for spurious associations with ancestry. Second,

analysis of somatic mutations in tumors face issues such

as intratumor heterogeneity that do not have parallels in

germline studies. Despite these differences, both types of

analyses can benefit from greater exchange of method-

ology.

Looking outside genes, network analysis of non-coding

SNPs requires additional information about regulatory

interactions, non-coding RNAs, among others. The

ENCODE project [54] is an important first step in the

generation of such information, but more data are needed.

Network analysis will play an increasingly important role

in prioritizing candidate causal variants for further exper-

imental validation. Ultimately, the combination of com-

putational and experimental approaches will yield

mechanistic insights into the process by which a genetic

variant, or a combination of variants, affect a complex

phenotype.
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